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2. Kind of results

... = acyclic
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3. Why acyclicity?

Complete ‘results’: no infinite reductions
normalisation + 7 = termination

e self-delimiting (this morning)

e typed A\ (BGK-conjecture)

normalisation + 7 = acyclic = unbounded growth

Partial ‘results”: no cyclic reductions
head normalisation + 7 = acyclic
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4. WRS’04

Theorem.
normalising orthogonal first-order TRS = acyclic

e normalising: object reducible to normal form (WN)
e orthogonal: left-linear, no critical pairs (ORTH)
e first-order: no bound variables (F-O)

e acyclic: no reduction cycles (AC)



4.1. Typical example

e WN: all terms reducible to a

e ORTH: < 1 variable in lhs, distinct defined symbols
e F-O: no bound variables

o AC: yes

e SN: no
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4.2. Proof by minimal counterexample
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Theorem (Head Normalisation).
Eventually a head step = strategy is normalising

Proof. By O’Donnell (77): outermost-fair strategies are
normalising for first-order orthogonal TRSs. O

So o would be normalising. Contradiction



5. WRS’05

Generalisation into 3 directions

first-order
Athogonal

RS

normalising




6. Generalising Normalisation
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Blackhole
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head normalisation
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Theorem (Head Head Normalisation).

Eventually a head step = strategy is head normalising

Proof. By Middeldorp (97): hyper head needed strate-
gies are head normalising for first-order orthogonal TRSs.
[]

Yes.




6.3. Does WHN work?

Yes.

CAmA
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Theorem (Head Head Normalisation).
Eventually a head step = strategy is head normalising

Proof. By Middeldorp (97): hyper head needed strate-
gies are head normalising for first-order orthogonal TRSSs.
[]

So 0 would be head normalising. Contradiction



7. Generalising Orthogonality
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7.1. Just omit?




7.1. Just omit?

Weak blackhole
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7.2. Other restriction?

weak orthogonality

WORTHO

/
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7.3. WORTHO

WORTHO: only trivial critical pairs (t,1)

P(S(z)) — =z

Other examples:

e Parallel or

e )\[(3n-calculus




7.4. Does WORTHO work?




7.4. Does WORTHO work?

A

Yes.




7.4. Does WORTHO work?
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Theorem (Head Normalisation).

Yes.

Eventually a head step = strategy is normalising

Proof. By vO (99): outermost fair strategies are nor-
malising for first-order weakly orthogonal TRSs. O

So ¢ would be normalising. Contradiction
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8.1. Just omit?

What does orthogonality mean?

Proof needs closure under sub-structures
What are they?

Thm does not hold (without more) for residual systems
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higher-order
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8.3. H-O

H-O: rewriting of A\-terms mod /(37

(Ax.M(2))N —peta M(N)
.Mz —eta M

Other examples:
o ur.Z(x) — Z(px.Z(x))

e Any transformation on terms with bound variables
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A

Yes.




8.4. Does H-O work?

Yes.

CAmA
Y

Theorem (Head Normalisation).
Eventually a head step = strategy is normalising

Proof. By Van Raamsdonk (96): outermost fair strate-
gies are normalising for orthogonal higher-order TRSs.
[]

So 0“ would be normalising. Contradiction



9. Three directions

higher-order
%eakly orthogonal

RS

head normalising




10. Pair-wise combinations




10.1. Two pairs
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11. Weakly ortho and head normalising

Head Head Normalisation Theorem fails for WORTHO!

a — b
g(b,:l?) — g<x7$)
flg(a,z)) — f(g(b,z))




11. Weakly ortho and head normalising

Head Head Normalisation Theorem fails for WORTHO!

a — b
g(b,:l?) — g(x,a:)
flg(a,z)) — f(g(b,x))
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Commutation of (head) cycles

(head) cycle

a4 ——=

G- - - - - Q

(head) normal form b ------- ==
(head) cycle

Contradiction




11.2. Commutation via projection

Klop projection

o

a ——== a

step !
projection | ¥'/7

reduction
projection ! 7/(0/¥)

> -




11.3. Commutation via multi-projection

Canonical projection
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11.4. Cycles do not project

a — b

flz,y,2) — fly,7,a)

o) T )

f(b7a7b) - = f(a’7 b7 a’)

acyclic




11.5. Cycles do project over extensions

a — b

flz,y,2) — fly,7,a)

cycle

aaa aaa
bab %fbba)ﬁfbba

extension cycle




11.6. Commutation via extended projection

Extended projection

cycle

(head) nf b ------- == b - == U/
extension cycle




11.6. Commutation via extended projection

Extended projection

cycle

\
(head) nf b ------- == b - == U/

extension cycle

Contradiction




11.7. Construction of extension 1

Repetition of cycle does project

a — b

fla,y,2) — fly,z,a)

| repetition of cycle |

f(a'aa'aa’) - f(CL,CL,CL) - = f(a,a,a) - f(CL,CL,G/)

j % ; %

f(b,a,b) - f(a7b7a) - = f(baa'aaf) - f(a,b,a)
I cycle I




11.8. Repetition Lemma

Lemma (Repetition).
1 extension vy of 1,
3 positive natural number n such that /0"

b oo = by —cm - S Y, S

extension |

"Q Yo
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' cycle




11.8. Repetition Lemma

Lemma (Repetition).
7 extension vy of ¥,
3 positive natural number n such that i /c" = )

n
g
I |
I I
g g g
A —== Qq v > (] —m——== (1
(N0) Q¥ Q. Q. Q¥

N\ N\ N\ N\

B =—omec > bo ——————— > b1 —-~—--»—~-—-»-—-~>—>bn_1 ——————— > bo

extension | |
| cycle |

Proof. By Pigeon Hole Principle (cf. division). O




11.9. Construction of extension 2

Repetition of cycles can be compressed

a — b

fla,y,2) — fly,z,a)

f(a,a,a ﬁfaaa ﬁfaaa

f(b,a,b) ——= f(a,b,a) ——= f(b,a,a) ——= f(a,b,a)




11.9. Construction of extension 2

Repetition of cycles can be compressed

a — b

fla,y,2) — fly,z,a)

f(a,a,a ﬁfaaa ﬁfaaa

f(b,a,b) ——= f(a,b,a) ——= f(b,a,a) ——= f(a,b,a)

(Yo Uth1)/o = (vo/o) U (Y1/0) = 11 Uy = 1o U




11.10. Compression Lemma

Lemma (Compression).

If o) = Uo<icn o/0’, then ¥ /o = 1) and 1 extends ).

extension




11.10. Compression Lemma

Lemma (Compression).

If o) = Uo<icn o/0’, then ¥ /o = 1) and 1 extends ).

extension
Proof.
(U w/jo= | wi/o)=

0<i<n 0<i<n

(distributivity)




11.11. Extension preserves non-emptyness

Lemma (Non-head). If ¢ is a non-empty parallel
head cycle of minimal length, then o /1) is so as well.

Proof. Could only fail if /1) = (). Then |¢| > [¢|. O




11.11. Extension preserves non-emptyness

Lemma (Non-head). If ¢ is a non-empty parallel
head cycle of minimal length, then o /1) is so as well.

Proof. Could only fail if /1) = (). Then |¢| > [¢|. O
head cycle

a4 ——==

\\\\\_ \\\\\_
(head) nf b ---—--- >> b ------- >=> b

extension head cycle



11.11. Extension preserves non-emptyness

Lemma (Non-head). If ¢ is a non-empty parallel
head cycle of minimal length, then o /1) is so as well.

Proof. Could only fail if /1) = (). Then |¢| > [¢|. O
head cycle

a4 ——==

\\\\\_ \\\\\_
(head) nf b ---—--- >> b ------- >=> b

extension head cycle

Contradiction



11.12. Three pairs
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12. Conjecture

7
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* WHN *
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13. A-calculi

e \(-calculus is W(H)N = acyclic.

e \(n-calculus is WN = acyclic.
e \x  is W(H)N = acyclic.
e \o is W(H)N = acyclic.
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e \(-calculus is W(H)N = acyclic.
e \(n-calculus is WN = acyclic.

e \x  is W(H)N = acyclic.

e \o is W(H)N = acyclic.

Extends to sub-calculi (e.g. typed)



13. M-calculi

e )\(3-calculus is W(H)N = acyclic.
e )\(3n-calculus is WN =-acyclic.

e \x  is W(H)N = acyclic.

e \o is W(H)N =-acyclic.

Extends to sub-calculi (e.g. typed)

Corollary: Typed Ao is acyclic
Mellies’ counterexample couldn’t have been bounded!



14. Full version

e See www.

e Fully-applied/extendedness (variable conditions)

e WORTHO projection.

e WORTHOQO = redex-clusters coverable by redex-chains.

e Etc. (50+ pages)




15. Conclusion

1. Extended WN & ORTHO & F-O TRS = acyclic
to WHN, WORTHO, H-O, pair-wise combinations.

2. Conjecture: WHN & WORTHO & H-O = acyclic.

3. WN A-calculus (with explicit substitutions) = acyclic.



15. Conclusion

1. Extended WN & ORTHO & F-O TRS = acyclic
to WHN, WORTHO, H-O, pair-wise combinations.

2. Conjecture: WHN & WORTHO & H-O = acyclic.

3. WN A-calculus (with explicit substitutions) = acyclic.

Full version (50+ pages) at www.
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