Title Page

Contents

44 >>

→

Page 1 of 41

Go Back

Full Screen

Close

Quit

1. Vicious circles in rewriting

Jeroen Ketema VU

Jan-Willem Klop VU, CWI, RU

Vincent van Oostrom UU

Title Page

Content

→

→

Page 2 of 41

Go Back

Full Screen

Close

Quit

2. Kind of results

 $\ldots \Rightarrow$ acyclic

Title Page

Contents

44 →

→

Page 3 of 41

Go Back

Full Screen

Close

Quit

3. Why acyclicity?

Complete 'results': no infinite reductions normalisation +? \Rightarrow termination

Title Page

Contents

44 →

→

Page 3 of 41

Go Back

Full Screen

Close

Quit

3. Why acyclicity?

Complete 'results': no infinite reductions normalisation +? \Rightarrow termination

- self-delimiting (this morning)
- typed $\lambda\beta$ (BGK-conjecture)

Title Page

Contents

- ← ← → → → → →

→

Page 3 of 41

Go Back

Full Screen

Close

Quit

3. Why acyclicity?

Complete 'results': no infinite reductions normalisation +? \Rightarrow termination

- self-delimiting (this morning)
- typed $\lambda\beta$ (BGK-conjecture)

normalisation + ? \Rightarrow acyclic \Rightarrow unbounded growth

Title Page

Contents

→

→

Page 3 of 41

Go Back

Full Screen

Close

Quit

3. Why acyclicity?

Complete 'results': no infinite reductions normalisation +? \Rightarrow termination

- self-delimiting (this morning)
- typed $\lambda\beta$ (BGK-conjecture)

normalisation + ? \Rightarrow acyclic \Rightarrow unbounded growth

Partial 'results': no cyclic reductions head normalisation + ? \Rightarrow acyclic

Title Page

Contents

→

Page 4 of 41

Go Back

Full Screen

Close

Quit

4. WRS'04

Theorem.

normalising orthogonal first-order TRS \Rightarrow acyclic

Title Page

Contents

44 >>

→

Page 4 of 41

Go Back

Full Screen

Close

Quit

4. WRS'04

Theorem.

normalising orthogonal first-order TRS \Rightarrow acyclic

- normalising: object reducible to normal form (WN)
- orthogonal: left-linear, no critical pairs (ORTH)
- first-order: no bound variables (F-O)
- acyclic: no reduction cycles (AC)

Title Page

Contents

44 >>

→

Page 5 of 41

Go Back

Full Screen

Close

Quit

4.1. Typical example

$$\begin{array}{ccc} a & \to & f(a) \\ f(x) & \to & b \end{array}$$

$$a \longrightarrow f(a) \longrightarrow f(f(a)) \longrightarrow f(f(f(a))) \longrightarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$b \longleftarrow f(b) \longleftarrow f(f(b)) \longleftarrow$$

• WN: all terms reducible to a

• ORTH: ≤ 1 variable in lhs, distinct defined symbols

• F-O: no bound variables

AC: yes

• SN: no

Title Page

Contents

44 >>

→

Page 6 of 41

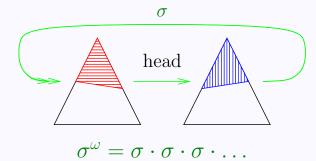
Go Back

Full Screen

Close

Quit

4.2. Proof by minimal counterexample



Title Page

Contents

44 >>

→

Page 6 of 41

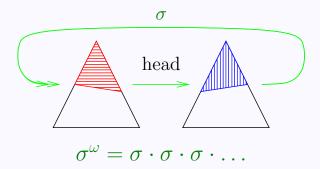
Go Back

Full Screen

Close

Quit

4.2. Proof by minimal counterexample



Theorem (Head Normalisation).

Eventually a head step \Rightarrow strategy is normalising

Proof. By O'Donnell (77): outermost-fair strategies are normalising for first-order orthogonal TRSs. \Box

Title Page

Contents

44 >>

→

Page 6 of 41

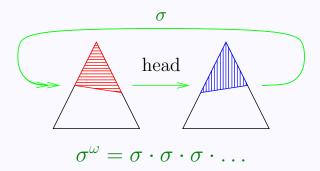
Go Back

Full Screen

Close

Quit

4.2. Proof by minimal counterexample



Theorem (Head Normalisation).

Eventually a head step \Rightarrow strategy is normalising

Proof. By O'Donnell (77): outermost-fair strategies are normalising for first-order orthogonal TRSs. \Box

So σ^{ω} would be normalising. Contradiction

Title Page

Contents

→

→

Page 7 of 41

Go Back

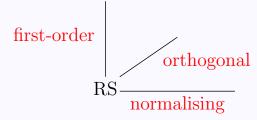
Full Screen

Close

Quit

5. WRS'05

Generalisation into 3 directions



Title Page

Contents

◄◀ **>>**

→

Page 8 of 41

Go Back

Full Screen

Close

Quit

6. Generalising Normalisation

Title Page

Contents

→

→

Page 9 of 41

Go Back

Full Screen

Close

Quit

6.1. Just omit?

Title Page

Contents

44 >>>

→

Page 9 of 41

Go Back

Full Screen

Close

Quit

6.1. Just omit?

Blackhole

Title Page

Contents

◆◆

→

Page 10 of 41

Go Back

Full Screen

Close

Quit

6.2. Other restriction?

Title Page

Contents

- ◆

Page 10 of 41

Go Back

Full Screen

Close

Quit

6.2. Other restriction?

head normalisation

WN——WHN

Title Page

Contents

◆◆

→

Page 11 of 41

Go Back

Full Screen

Close

Quit

6.3. Does WHN work?

Title Page

Contents

←

→

Page 11 of 41

Go Back

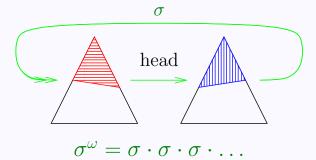
Full Screen

Close

Quit

6.3. Does WHN work?

Yes.



Title Page

Contents

→

→

Page 11 of 41

Go Back

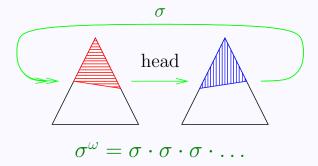
Full Screen

Close

Quit

6.3. Does WHN work?

Yes.



Theorem (Head Head Normalisation).

Eventually a head step \Rightarrow strategy is head normalising

Proof. By Middeldorp (97): hyper head needed strategies are head normalising for first-order orthogonal TRSs.

Title Page

Contents

◄◀ **>>**

→

Page 11 of 41

Go Back

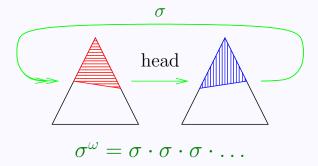
Full Screen

Close

Quit

6.3. Does WHN work?

Yes.



Theorem (Head Head Normalisation).

Eventually a head step \Rightarrow strategy is head normalising

Proof. By Middeldorp (97): hyper head needed strategies are head normalising for first-order orthogonal TRSs.

So σ^{ω} would be head normalising. Contradiction

Title Page

Contents

→

→

Page 12 of 41

Go Back

Full Screen

Close

Quit

7. Generalising Orthogonality

Title Page

Contents

→

- ◀ - | →

Page 13 of 41

Go Back

Full Screen

Close

Quit

7.1. Just omit?

Title Page

Contents

→

→

Page 13 of 41

Go Back

Full Screen

Close

Quit

7.1. Just omit?

Weak blackhole

Title Page

Contents

◆◆

→

Page 14 of 41

Go Back

Full Screen

Close

Quit

7.2. Other restriction?

Title Page

Contents

→

→

Page 14 of 41

Go Back

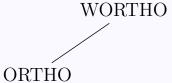
Full Screen

Close

Quit

7.2. Other restriction?

weak orthogonality



Title Page

Contents

→

→

Page 15 of 41

Go Back

Full Screen

Close

Quit

7.3. WORTHO

WORTHO: only trivial critical pairs $\langle t, t \rangle$

Title Page

Contents

44 >>

→

Page 15 of 41

Go Back

Full Screen

Close

Quit

7.3. WORTHO

WORTHO: only trivial critical pairs $\langle t, t \rangle$

$$P(S(x)) \to x$$
$$S(P(x)) \to x$$

$$P(x) \leftarrow \underline{P(S(P(x)))} \rightarrow P(x)$$

 $S(x) \leftarrow \underline{S(\overline{P(S(x))})} \rightarrow S(x)$

Title Page

Contents

44 >>

→

Page 15 of 41

Go Back

Full Screen

Close

Quit

7.3. WORTHO

WORTHO: only trivial critical pairs $\langle t, t \rangle$

$$P(S(x)) \to x$$

$$S(P(x)) \to x$$

$$P(x) \leftarrow \underline{P(\overline{S(P}(x))} \rightarrow P(x)$$

 $S(x) \leftarrow \underline{S(\overline{P(S}(x))} \rightarrow S(x)$

Other examples:

- Parallel or
- $\lambda\beta\eta$ -calculus

Title Page

Contents

→

Page 16 of 41

Go Back

Full Screen

Close

Quit

7.4. Does WORTHO work?

Title Page

Contents

◄◀ ▶▶

→

Page 16 of 41

Go Back

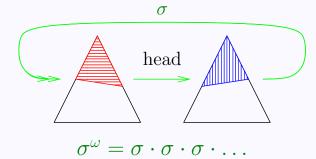
Full Screen

Close

Quit

7.4. Does WORTHO work?

Yes.



Title Page

Contents

44 >>

→

Page 16 of 41

Go Back

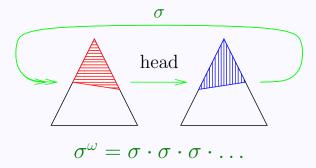
Full Screen

Close

Quit

7.4. Does WORTHO work?

Yes.



Theorem (Head Normalisation).

Eventually a head step \Rightarrow strategy is normalising

Proof. By vO (99): outermost fair strategies are normalising for first-order weakly orthogonal TRSs.

So σ^{ω} would be normalising. Contradiction

Title Page

Contents

- 44 - ▶▶

- ◀ - ▶

Page 17 of 41

Go Back

Full Screen

Close

Quit

8. Generalising First-Orderness

Title Page

Contents

→

Page 18 of 41

Go Back

Full Screen

Close

Quit

8.1. Just omit?

Title Page

Contents

→

- ◆

Page 18 of 41

Go Back

Full Screen

Close

Quit

8.1. Just omit?

What does orthogonality mean?

Title Page

Contents

→

→

Page 18 of 41

Go Back

Full Screen

Close

Quit

8.1. Just omit?

What does orthogonality mean?

Proof needs closure under sub-structures What are they?

Title Page

Contents

←

→

Page 18 of 41

Go Back

Full Screen

Close

Quit

8.1. Just omit?

What does orthogonality mean?

Proof needs closure under sub-structures What are they?

Thm does not hold (without more) for residual systems

Title Page

Contents

◆◆

→

Page 19 of 41

Go Back

Full Screen

Close

Quit

8.2. Other restriction?

Title Page

Contents

→

→

Page 19 of 41

Go Back

Full Screen

Close

Quit

8.2. Other restriction?

higher-order

Title Page

Contents

→

→

Page 20 of 41

Go Back

Full Screen

Close

Quit

8.3. H-O

H-O: rewriting of λ -terms $\mod \alpha\beta\eta$

$$\begin{array}{ccc} (\lambda x. M(x)) N & \to_{\mathsf{beta}} & M(N) \\ \lambda x. Mx & \to_{\mathsf{eta}} & M \end{array}$$

Title Page

Contents

Page 20 of 41

Go Back

Full Screen

Close

Quit

8.3. H-O

H-O: rewriting of λ -terms $\mod \alpha \beta \eta$

$$\begin{array}{ccc} (\lambda x. M(x)) N & \to_{\mathsf{beta}} & M(N) \\ \lambda x. Mx & \to_{\mathsf{eta}} & M \end{array}$$

Other examples:

- $\mu x.Z(x) \rightarrow Z(\mu x.Z(x))$
- Any transformation on terms with bound variables

Title Page

Contents

◆◆

→

Page 21 of 41

Go Back

Full Screen

Close

Quit

8.4. Does H-O work?

Title Page

Contents

←

→

Page 21 of 41

Go Back

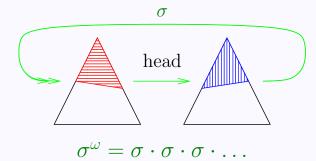
Full Screen

Close

Quit

8.4. Does H-O work?

Yes.



Title Page

Contents

44 →

→

Page 21 of 41

Go Back

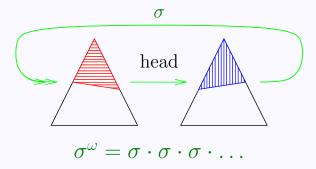
Full Screen

Close

Quit

8.4. Does H-O work?

Yes.



Theorem (Head Normalisation).

Eventually a head step \Rightarrow strategy is normalising

Proof. By Van Raamsdonk (96): outermost fair strategies are normalising for orthogonal higher-order TRSs.

So σ^{ω} would be normalising. Contradiction

Title Page

Contents

→

→

Page 22 of 41

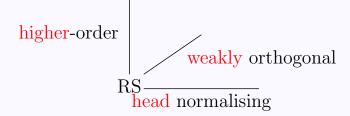
Go Back

Full Screen

Close

Quit

9. Three directions



Title Page

Contents

44 >>

→

Page 23 of 41

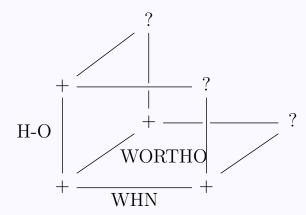
Go Back

Full Screen

Close

Quit

10. Pair-wise combinations



Title Page

Contents

→

- ◆ - | - ▶

Page 24 of 41

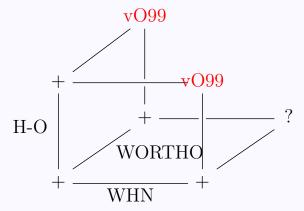
Go Back

Full Screen

Close

Quit

10.1. Two pairs



Title Page

Contents

→

→

Page 25 of 41

Go Back

Full Screen

Close

Quit

11. Weakly ortho and head normalising

Head Head Normalisation Theorem fails for WORTHO!

$$\begin{array}{ccc} a & \to & b \\ g(b,x) & \to & g(x,x) \\ f(g(a,x)) & \to & f(g(b,x)) \end{array}$$

Title Page

Contents

44 >>

→

Page 25 of 41

Go Back

Full Screen

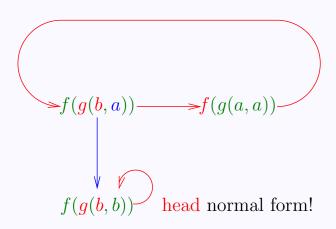
Close

Quit

11. Weakly ortho and head normalising

Head Head Normalisation Theorem fails for WORTHO!

$$\begin{array}{ccc} a & \to & b \\ g(b,x) & \to & g(x,x) \\ f(g(a,x)) & \to & f(g(b,x)) \end{array}$$



Title Page

Contents

→

Page 26 of 41

Go Back

Full Screen

Close

Quit

11.1. Alternative proof method

Commutation of (head) cycles

Title Page

Contents

→

→

Page 26 of 41

Go Back

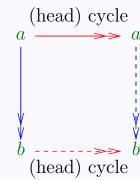
Full Screen

Close

Quit

11.1. Alternative proof method

Commutation of (head) cycles



(head) normal form

Title Page

Contents

→

Page 26 of 41

Go Back

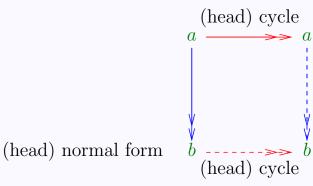
Full Screen

Close

Quit

11.1. Alternative proof method

Commutation of (head) cycles



Contradiction

Title Page

Contents

44 >>>

→

Page 27 of 41

Go Back

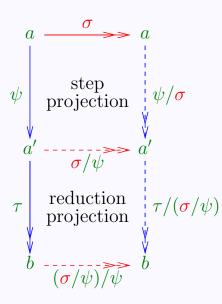
Full Screen

Close

Quit

11.2. Commutation via projection

Klop projection



Title Page

Contents

44 >>

→

Page 28 of 41

Go Back

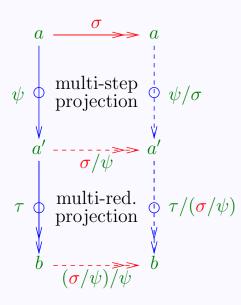
Full Screen

Close

Quit

11.3. Commutation via multi-projection

Canonical projection



Title Page

Contents

→

Page 29 of 41

Go Back

Full Screen

Close

Quit

11.4. Cycles do not project

$$\begin{array}{ccc} a & \to & b \\ f(x, y, z) & \to & f(y, x, a) \end{array}$$

$$f(a, a, a) \xrightarrow{\text{cycle}} f(a, a, a)$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Title Page

Contents

→

→

Page 30 of 41

Go Back

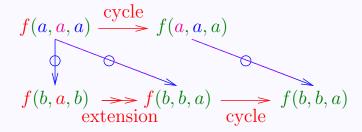
Full Screen

Close

Quit

11.5. Cycles do project over extensions

$$\begin{array}{ccc} a & \to & b \\ f(x, y, z) & \to & f(y, x, a) \end{array}$$



Title Page

Contents

→

→

Page 31 of 41

Go Back

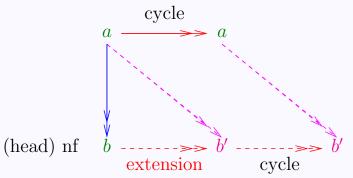
Full Screen

Close

Quit

11.6. Commutation via extended projection

Extended projection



Title Page

Contents

44 →

→

Page 31 of 41

Go Back

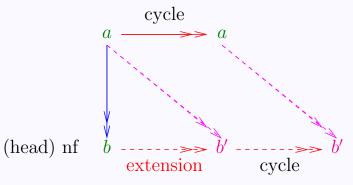
Full Screen

Close

Quit

11.6. Commutation via extended projection

Extended projection



Contradiction

Title Page

Contents

44 >>

→

Page 32 of 41

Go Back

Full Screen

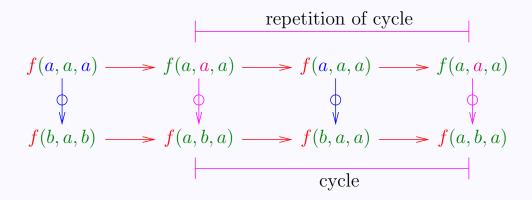
Close

Quit

11.7. Construction of extension 1

Repetition of cycle does project

$$\begin{array}{ccc} a & \to & b \\ f(x, y, z) & \to & f(y, x, a) \end{array}$$



Title Page

Contents

44 →

→

Page 33 of 41

Go Back

Full Screen

Close

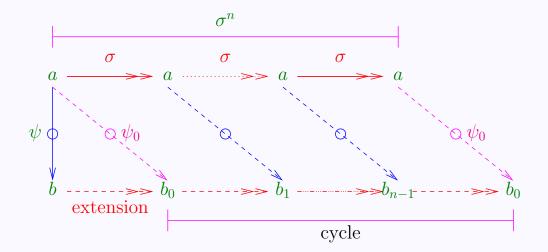
Quit

11.8. Repetition Lemma

Lemma (Repetition).

 \exists extension ψ_0 of ψ ,

 \exists positive natural number n such that $\psi_0/\sigma^n = \psi_0$



Title Page

Contents

44 >>

→

Page 33 of 41

Go Back

Full Screen

Close

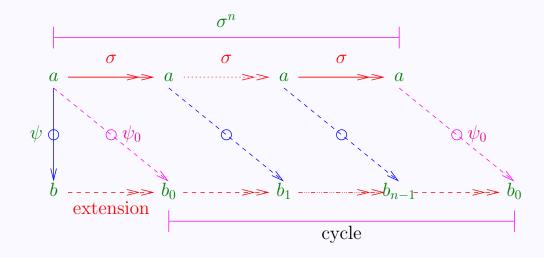
Quit

11.8. Repetition Lemma

Lemma (Repetition).

 \exists extension ψ_0 of ψ ,

 \exists positive natural number n such that $\psi_0/\sigma^n = \psi_0$



Proof. By Pigeon Hole Principle (cf. division).

Title Page

Contents

44 >>

→

Page 34 of 41

Go Back

Full Screen

Close

Quit

11.9. Construction of extension 2

Repetition of cycles can be compressed

$$\begin{array}{ccc} a & \to & b \\ f(x, y, z) & \to & f(y, x, a) \end{array}$$

$$f(a, a, a) \xrightarrow{\sigma} f(a, a, a) \xrightarrow{\sigma} f(a, a, a)$$

$$\downarrow \psi_0 \qquad \qquad \psi_1 \qquad \qquad \psi_0$$

$$f(b, a, b) \xrightarrow{\hspace{1cm}} f(a, b, a) \xrightarrow{\hspace{1cm}} f(b, a, a) \xrightarrow{\hspace{1cm}} f(a, b, a)$$

Title Page

Contents

44 >>>

→

Page 34 of 41

Go Back

Full Screen

Close

Quit

11.9. Construction of extension 2

Repetition of cycles can be compressed

$$\begin{array}{ccc} a & \to & b \\ f(x, y, z) & \to & f(y, x, a) \end{array}$$

$$f(a, a, a) \xrightarrow{\sigma} f(a, a, a) \xrightarrow{\sigma} f(a, a, a)$$

$$\downarrow \psi_{0} \qquad \psi_{1} \qquad \psi_{0}$$

$$f(b, a, b) \xrightarrow{\longrightarrow} f(a, b, a) \xrightarrow{\longrightarrow} f(b, a, a) \xrightarrow{\longrightarrow} f(a, b, a)$$

$$(\psi_{0} \cup \psi_{1})/\sigma = (\psi_{0}/\sigma) \cup (\psi_{1}/\sigma) = \psi_{1} \cup \psi_{0} = \psi_{0} \cup \psi_{1}$$

Title Page

Contents

44 →

→

Page 35 of 41

Go Back

Full Screen

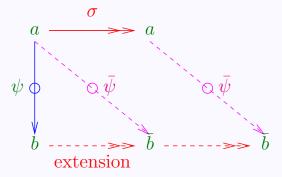
Close

Quit

11.10. Compression Lemma

Lemma (Compression).

If $\bar{\psi} = \bigcup_{0 \le i \le n} \psi_0 / \sigma^i$, then $\bar{\psi} / \sigma = \bar{\psi}$ and $\bar{\psi}$ extends ψ .



Title Page

Contents

44 →

→

Page 35 of 41

Go Back

Full Screen

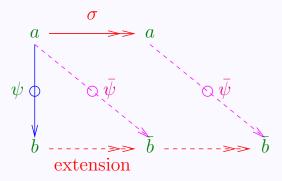
Close

Quit

11.10. Compression Lemma

Lemma (Compression).

If $\bar{\psi} = \bigcup_{0 \le i \le n} \bar{\psi_0/\sigma^i}$, then $\bar{\psi}/\sigma = \bar{\psi}$ and $\bar{\psi}$ extends ψ .



Proof.

$$(\bigcup_{0 \le i < n} \psi_i) / \sigma = \bigcup_{0 \le i < n} (\psi_i / \sigma) = \bigcup_{0 \le i < n} \psi_{i+1 \bmod n} = \bigcup_{0 \le i < n} \psi_i$$

(distributivity)

Title Page

Contents

44 →

→

Page 36 of 41

Go Back

Full Screen

Close

Quit

11.11. Extension preserves non-emptyness

Lemma (Non-head). If σ is a non-empty parallel head cycle of minimal length, then $\sigma/\bar{\psi}$ is so as well.

Proof. Could only fail if $\sigma/\bar{\psi} = \emptyset$. Then $|\bar{\psi}| > |\bar{\psi}|$. \square

Title Page

Contents

44 →

→

Page 36 of 41

Go Back

Full Screen

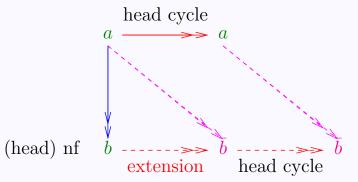
Close

Quit

11.11. Extension preserves non-emptyness

Lemma (Non-head). If σ is a non-empty parallel head cycle of minimal length, then $\sigma/\bar{\psi}$ is so as well.

Proof. Could only fail if $\sigma/\bar{\psi} = \emptyset$. Then $|\bar{\psi}| > |\bar{\psi}|$. \square



Title Page

Contents

◄◀ **>>**

→

Page 36 of 41

Go Back

Full Screen

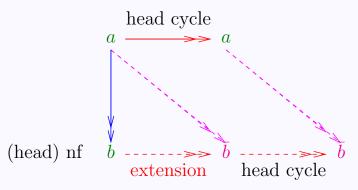
Close

Quit

11.11. Extension preserves non-emptyness

Lemma (Non-head). If σ is a non-empty parallel head cycle of minimal length, then $\sigma/\bar{\psi}$ is so as well.

Proof. Could only fail if $\sigma/\bar{\psi} = \emptyset$. Then $|\bar{\psi}| > |\bar{\psi}|$. \square



Contradiction

Title Page

Contents

44 >>

→

Page 37 of 41

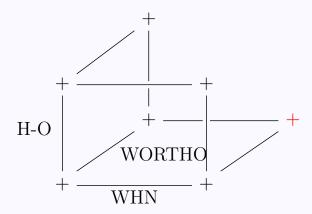
Go Back

Full Screen

Close

Quit

11.12. Three pairs



Title Page

Contents

44 >>>

→

Page 38 of 41

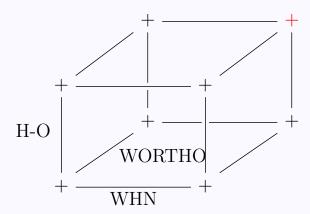
Go Back

Full Screen

Close

Quit

12. Conjecture



Title Page

Contents

44 >>

→

Page 39 of 41

Go Back

Full Screen

Close

Quit

13. λ -calculi

- $\lambda\beta$ -calculus is W(H)N \Rightarrow acyclic.
- $\lambda\beta\eta$ -calculus is WN \Rightarrow acyclic.
- λx^- is W(H)N \Rightarrow acyclic.
- $\lambda \sigma$ is W(H)N \Rightarrow acyclic.

Title Page

Contents

44 >>

→

Page 39 of 41

Go Back

Full Screen

Close

Quit

13. λ -calculi

- $\lambda \beta$ -calculus is W(H)N \Rightarrow acyclic.
- $\lambda\beta\eta$ -calculus is WN \Rightarrow acyclic.
- λx^- is W(H)N \Rightarrow acyclic.
- $\lambda \sigma$ is W(H)N \Rightarrow acyclic.

Extends to sub-calculi (e.g. typed)

Title Page

Contents

44 >>>

→

Page 39 of 41

Go Back

Full Screen

Close

Quit

13. λ -calculi

- $\lambda\beta$ -calculus is W(H)N \Rightarrow acyclic.
- $\lambda \beta \eta$ -calculus is WN \Rightarrow acyclic.
- λx^- is W(H)N \Rightarrow acyclic.
- $\lambda \sigma$ is W(H)N \Rightarrow acyclic.

Extends to sub-calculi (e.g. typed)

Corollary: Typed $\lambda \sigma$ is acyclic Melliès' counterexample couldn't have been bounded!

Title Page

Contents

→

→

Page 40 of 41

Go Back

Full Screen

Close

Quit

14. Full version

- See www.
- Fully-applied/extendedness (variable conditions)
- WORTHO projection.
- WORTHO \Rightarrow redex-clusters coverable by redex-chains.
- Etc. (50+ pages)

Title Page

Contents

→

→

Page 41 of 41

Go Back

Full Screen

Close

Quit

15. Conclusion

- 1. Extended WN & ORTHO & F-O TRS \Rightarrow acyclic to WHN, WORTHO, H-O, pair-wise combinations.
- 2. Conjecture: WHN & WORTHO & H-O \Rightarrow acyclic.
- 3. WN λ -calculus (with explicit substitutions) \Rightarrow acyclic.

Title Page

Contents

→

Page 41 of 41

Go Back

Full Screen

Close

Quit

15. Conclusion

- 1. Extended WN & ORTHO & F-O TRS \Rightarrow acyclic to WHN, WORTHO, H-O, pair-wise combinations.
- 2. Conjecture: WHN & WORTHO & H-O \Rightarrow acyclic.
- 3. WN λ -calculus (with explicit substitutions) \Rightarrow acyclic.

Full version (50+ pages) at www.