The Epsilon Calculus and Herbrand Complexity
Georg Moser and Richard ZachStudia Logica 82(1), pp. 133 – 155, 2006.
Abstract
Hilbert’s ε-calculus is based on an extension of the language of predicate logic by a term-forming operator ex. Two fundamental results about the ε-calculus, the first and second epsilon theorem, play a rôle similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand’s Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand disjunctions of existential theorems obtained by this elimination procedure.
BibTeX
@article{GMRZ-SL06, author = "Georg Moser and Richard Zach", title = "The Epsilon Calculus and Herbrand Complexity", journal = "Studia Logica", volume = 82, number = 1, year = 2006, pages = "133--155" }