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Confluence by
local confluence (Newman)
decreasing diagrams (trough)
local confluence below (Winkler & Buchberger)
decreasing diagrams (seascape)

Concluding remarks



Lemma of Newman/Pous

Theorem (Newman 1942)

local confluence implies confluence, if — terminating

=



Lemma of Newman/Pous

Theorem (folklore ?)

local commutation implies commutation, if > U » terminating
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Theorem (Pous 2007)

local commutation implies commutation, if > ; »T terminating

=
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Lemma of Newman/Pous

Proof.

intuition: tiling terminates since splitting bounded by termination.

must stop: infinite tiling = infinite > ; »* reduction. O



Lemma of Hindley/uet

Theorem (Huet 1980)

strong confluence implies confluence

=



Lemma of Hindley/uet

Theorem (Hindley 1964)

strong commutation implies commutation

=
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Proof.

intuition: tiling terminates since only > steps are split
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Lemma of Hindley/uet

Proof.

intuition: tiling terminates since only > steps are split

repeat: fill in local peak with local diagram



Lemma of Hindley/uet

Proof.

intuition: tiling terminates since only > steps are split

must stop: each » stripe is eventualy filled



Unify Newman/Pous with Hindley/uet?
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Theorem (de Bruijn 1978,vO 1994)
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Decreasing Diagrams (trough version)

Theorem (vO 1994)
locally decreasing implies commutation
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Decreasing Diagrams (trough version)

Theorem (vO 1994)
locally decreasing implies commutation
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by decreasingness
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Proof.

by decreasingness

measure peak by multiset sum |o| W |7|
|| filters smaller labels to right, |32343| = [3, 3, 4]



Decreasing Diagrams (trough version)

Proof.

by decreasingness

decreasing if |o| W |7| as large as both |o7’| and |70
in multiset-extension of <



Decreasing Diagrams (trough version)

Proof.

(1) locally decreasing = decreasing
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Decreasing Diagrams (trough version)

Proof.

(1) locally decreasing = decreasing

W || is [1] 6 [j] = [i,J]

/]
i(=iY*(+e)(=i + =j)*| is [i], [i,j] or [i, j1,- .-

a.jn]
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Decreasing Diagrams (trough version)

Proof.

(3) filling with decreasing diagram decreases measure

|o| W |Tv| greater than |o’| W |v|
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Lemma of Hindley/uet by decreasingness

Proof.

strong commutation = commutation
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More than Newman/Pous U Hindley/uet. ..

monotone algebra decreasing diagrams

intuition  termination of TRSs confluence of ARSs
» complete for proving confluence of countable ARSs (vO94)
» open whether complete for non-countable/commutation
» applying decreasing diagams not perceived as simple. ..
Today:
1. stronger properties (than confluence/commutation)
2. troughs ~~ seascapes (more general local diagrams)

3. heuristics (for constructing labels)
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(1) Stronger properties

Proof.

trivial from decreasing diagrams proof. load induction with P. [
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from Newman's Lemma (trough) to (seascape)

Theorem (Winkler & Buchberger 1983)
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local commutation below = commutation, if > ; » T terminating
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(2) Trough ~~ seascape

from Pous’ Lemma (trough) to (seascape)

Theorem
local commutation below = commutation, if > ; » T terminating

=

Definition
below: if a » b in seascape, a (>U »)T-reachable from top with >



(2) Trough ~~ seascape

from decreasing diagrams (trough) to (seascape)

Theorem
locally decreasing seascape = confluence
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(2) Trough ~~ seascape

from decreasing diagrams (trough) to (seascape)

Theorem
locally decreasing seascape = commutation

v

AN A

N o
<iv<j\P<iv<j \f

> =g > » = UJ-GJ »;, < well-founded order on | U J



(2) Trough ~~ seascape

Proof.

same measure of peaks, but local peak may not be base case
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Proof.
but its peaks can be filled in by induction

. . o’\ﬁ o
\,'vsl\/ =4 ! sl
J N



(2) Trough ~~ seascape

Proof.
but its peaks can be filled in by induction.




(2) Trough ~~ seascape

Proof.
but its peaks can be filled in by induction..




(2) Trough ~~ seascape

Proof.

giving in the end a (trough) locally decreasing diagram
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(2) Trough ~~ seascape

trough result < seascape result, for given labelling
Newman < Winkler & Buchberger (idem for variants)
Huet < Huet (nothing gained, idem for Hindley)

covers all ‘local ...= confluence’ results in Terese Chapter 1

vV v . v. v .Y

handy heuristic: self-labelling (label steps by themselves)
allows to transfer wfo on objects to wfo on steps
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seascape version:

Theorem (Geser)
commutation holds, if » /<(= < ; » ; «) terminating and
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Theorem (Geser)
commutation holds, if » /< terminating and

Proof.

label steps by target, order by » /<.



(2) Trough ~~ seascape

Theorem (Geser)
commutation holds, if » /< terminating and

Proof.

all labels in seascape »/<-reachable from (label of) >-step.

O
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(1) Stronger properties

from (trough) to (seascape)

Theorem

If P holds locally and preserved by pasting, then holds for all D
with now pasting also inside seascapes!

Example

» define distance of a diagram with peak b «- a —» ¢ and
seascape b «+* ¢, as number of forward steps minus number
of backward steps on a —» b <™ ¢ « a.

» diagrams with non-negative distance preserved under pasting.

» will yield: all maximal reductions have same length
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(3) Heuristics

>

label step by rule-name in a term rewriting system

Theorem
Linear TRS is confluent, if critical peaks are locally decreasing.

Example (Gramlich & Lucas)

1. nats — 0 : inc(nats)

2. inc(x :y) — s(x) s inc(y)
3.

4. tl(x:y)—y

5.

hd(x:y) — x

inc(tl(nats)) — tl(inc(nats))

one critical peak



(3) Heuristics

> label step by rule-name in a term rewriting system

Theorem
Linear TRS is confluent, if critical peaks are locally decreasing.

Example (Gramlich & Lucas)

inc(tl(nats))

5 1
tl(inc(nats)) inc(tl(0 : inc(nats)))
1
tl(inc(0 : inc(nats)))
2\ A
tl(s(0) : inc(inc(pats))
4

inc(inc(nats))

easy to order rule-symbols for decreasingness (like for RPO)
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Concluding remarks
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covers all Terese exc. of shape ‘local = global confluence’
used in process algebra to establish bisimulation results (Pous)
can deal with A-calculi with explicit subs (proceedings)
employed for modularity of constructive confluence (IJCAR)
heuristics should be automatable (like monotone algebras)
extends to decreasing diagrams modulo (Ohlebusch)

do other proofs of confluence by decreasing diagrams
generalise (naturally)?
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