Confluence by Decreasing Diagrams, Converted

Vincent van Oostrom

Theoretical Philosophy
Utrecht University
Royal Kingdom of the Netherlands
research conducted at LIX, Paris, the Republic of France
16:00-16:30, Thursday July 17, RTA 2008

Confluence by
local confluence (Newman)
decreasing diagrams (trough) local confluence below (Winkler \& Buchberger) decreasing diagrams (seascape)

Concluding remarks

Lemma of Newman/Pous

Theorem (Newman 1942)
local confluence implies confluence, if \rightarrow terminating

Lemma of Newman/Pous

Theorem (folklore ?)
local commutation implies commutation, if $\triangleright \cup \triangleright$ terminating

Lemma of Newman/Pous

Theorem (Pous 2007)
local commutation implies commutation, if $\triangleright^{+} ; \square^{+}$terminating

Lemma of Newman/Pous

Proof.

intuition: tiling terminates since splitting bounded by termination.

repeat: fill in local peak with local diagram

Lemma of Newman/Pous

Proof.

intuition: tiling terminates since splitting bounded by termination.

repeat: fill in local peak with local diagram

Lemma of Newman/Pous

Proof.

intuition: tiling terminates since splitting bounded by termination.

repeat: fill in local peak with local diagram

Lemma of Newman/Pous

Proof.

intuition: tiling terminates since splitting bounded by termination.

repeat: fill in local peak with local diagram

Lemma of Newman/Pous

Proof.

intuition: tiling terminates since splitting bounded by termination.

repeat: fill in local peak with local diagram

Lemma of Newman/Pous

Proof.

intuition: tiling terminates since splitting bounded by termination.

repeat: fill in local peak with local diagram

Lemma of Newman/Pous

Proof.

intuition: tiling terminates since splitting bounded by termination.

repeat: fill in local peak with local diagram

Lemma of Newman/Pous

Proof.

intuition: tiling terminates since splitting bounded by termination.

repeat: fill in local peak with local diagram

Lemma of Newman/Pous

Proof.

intuition: tiling terminates since splitting bounded by termination.

repeat: fill in local peak with local diagram

Lemma of Newman/Pous

Proof.

intuition: tiling terminates since splitting bounded by termination.

repeat: fill in local peak with local diagram

Lemma of Newman/Pous

Proof.

intuition: tiling terminates since splitting bounded by termination.

repeat: fill in local peak with local diagram

Lemma of Newman/Pous

Proof.

intuition: tiling terminates since splitting bounded by termination.

repeat: fill in local peak with local diagram

Lemma of Newman/Pous

Proof.

intuition: tiling terminates since splitting bounded by termination.

repeat: fill in local peak with local diagram

Lemma of Newman/Pous

Proof.

intuition: tiling terminates since splitting bounded by termination.

repeat: fill in local peak with local diagram

Lemma of Newman/Pous

Proof.

intuition: tiling terminates since splitting bounded by termination.

must stop: infinite tiling \Rightarrow infinite $\triangleright^{+} ; \downarrow^{+}$reduction.

Lemma of Hindley/uet

Theorem (Huet 1980)
strong confluence implies confluence

Lemma of Hindley/uet

Theorem (Hindley 1964)
strong commutation implies commutation

Lemma of Hindley/uet

Proof.

intuition: tiling terminates since only \triangleright steps are split

repeat: fill in local peak with local diagram

Lemma of Hindley/uet

Proof.

intuition: tiling terminates since only \triangleright steps are split

repeat: fill in local peak with local diagram

Lemma of Hindley/uet

Proof.

intuition: tiling terminates since only \triangleright steps are split

repeat: fill in local peak with local diagram

Lemma of Hindley/uet

Proof.

intuition: tiling terminates since only \triangleright steps are split

repeat: fill in local peak with local diagram

Lemma of Hindley/uet

Proof.

intuition: tiling terminates since only \triangleright steps are split

repeat: fill in local peak with local diagram

Lemma of Hindley/uet

Proof.

intuition: tiling terminates since only \triangleright steps are split

repeat: fill in local peak with local diagram

Lemma of Hindley/uet

Proof.

intuition: tiling terminates since only \triangleright steps are split

repeat: fill in local peak with local diagram

Lemma of Hindley/uet

Proof.

intuition: tiling terminates since only \triangleright steps are split

repeat: fill in local peak with local diagram

Lemma of Hindley/uet

Proof.

intuition: tiling terminates since only \triangleright steps are split

repeat: fill in local peak with local diagram

Lemma of Hindley/uet

Proof.

intuition: tiling terminates since only \triangleright steps are split

repeat: fill in local peak with local diagram

Lemma of Hindley/uet

Proof.

intuition: tiling terminates since only \triangleright steps are split

repeat: fill in local peak with local diagram

Lemma of Hindley/uet

Proof.

intuition: tiling terminates since only \triangleright steps are split

repeat: fill in local peak with local diagram

Lemma of Hindley/uet

Proof.

intuition: tiling terminates since only \triangleright steps are split

must stop: each $>$ stripe is eventualy filled

Unify Newman/Pous with Hindley/uet?

Decreasing Diagrams (trough version)

Theorem (de Bruijn 1978,vO 1994) locally decreasing implies confluence

$\rightarrow=\bigcup_{i \in I} \rightarrow_{i}, \prec$ well-founded order on I

Decreasing Diagrams (trough version)

Theorem (de Bruijn 1978,vO 1994) locally decreasing implies confluence

$\rightarrow=\bigcup_{i \in I} \rightarrow_{i}, \prec$ well-founded order on I

Decreasing Diagrams (trough version)

Theorem (vO 1994)
locally decreasing implies commutation

$\triangleright=\bigcup_{i \in I} \triangleright_{i}, \downarrow=\bigcup_{j \in J} \triangleright_{j}, \prec$ well-founded order on $I \cup J$

Decreasing Diagrams (trough version)

Theorem (vO 1994)
locally decreasing implies commutation

$\triangleright=\bigcup_{i \in I} \triangleright_{i}, \quad=\bigcup_{j \in J} \triangleright_{j}, \prec$ well-founded order on $I \cup J$

Decreasing Diagrams (trough version)

Proof.

by decreasingness

peak σ, τ as large as $\mathrm{Ihs} \sigma \tau^{\prime}$ and rhs $\tau \sigma^{\prime}$ after filtering

Decreasing Diagrams (trough version)

Proof.
by decreasingness

measure peak by multiset sum $|\sigma| \uplus|\tau|$
\mid-| filters smaller labels to right, $|32343|=[3,3,4]$

Decreasing Diagrams (trough version)

Proof.

by decreasingness

decreasing if $|\sigma| \uplus|\tau|$ as large as both $\left|\sigma \tau^{\prime}\right|$ and $\left|\tau \sigma^{\prime}\right|$ in multiset-extension of \prec

Decreasing Diagrams (trough version)

Proof.

(1) locally decreasing \Rightarrow decreasing

peak $|i| \uplus|j|$
Ihs $\left|i(\prec i)^{*}(j+\varepsilon)(\prec i+\prec j)^{*}\right|$

Decreasing Diagrams (trough version)

Proof.

(1) locally decreasing \Rightarrow decreasing

$|i| \uplus|j|$ is $[i] \uplus[j]=[i, j]$
$\left|i(\prec i)^{*}(j+\varepsilon)(\prec i+\prec j)^{*}\right|$ is $[i],[i, j]$ or $\left[i, j_{1}, \ldots, j_{n}\right]$

Decreasing Diagrams (trough version)

Proof.
(2) decreasingness preserved under pasting

Decreasing Diagrams (trough version)

Proof.
(2) decreasingness preserved under pasting on left

Decreasing Diagrams (trough version)

Proof.
(2) decreasingness preserved under pasting

Decreasing Diagrams (trough version)

Proof.
(2) decreasingness preserved under pasting on right

Decreasing Diagrams (trough version)

Proof.

(3) filling with decreasing diagram decreases measure

Decreasing Diagrams (trough version)

Proof.

(3) filling with decreasing diagram decreases measure

Decreasing Diagrams (trough version)

Proof.
(3) filling with decreasing diagram decreases measure

$$
|\sigma| \uplus|\tau v| \text { greater than }\left|\sigma^{\prime}\right| \uplus|v|
$$

Decreasing Diagrams (trough version)

Decreasing Diagrams (trough version)

Proof.

$\mathrm{LD} \Rightarrow \mathrm{D}$ by (1) assumption, (2) pasting, and (3) filling

Decreasing Diagrams (trough version)

Proof.

$\mathrm{LD} \Rightarrow \mathrm{D}$ by (1) assumption, (2) pasting, and (3) filling

Decreasing Diagrams (trough version)

Decreasing Diagrams (trough version)

Proof.
$L D \Rightarrow D$ by (1) assumption, (2) pasting, and (3) filling

Decreasing Diagrams (trough version)

Proof.
 $\mathrm{LD} \Rightarrow \mathrm{D}$ by (1) assumption, (2) pasting, and (3) filling

Decreasing Diagrams (trough version)

Decreasing Diagrams (trough version)

Decreasing Diagrams (trough version)

Unifies Newman/Pous with Hindley/uet!

Lemma of Newman/Pous by decreasingness

Lemma of Newman/Pous by decreasingness

Proof.
local confluence \Rightarrow confluence, if \rightarrow terminating

label steps by their source, order labels by \rightarrow^{+}

Lemma of Newman/Pous by decreasingness

Proof.
local confluence \Rightarrow confluence, if \rightarrow terminating

label steps by their source, order labels by \rightarrow^{+}

Lemma of Newman/Pous by decreasingness

Proof.
local confluence \Rightarrow confluence, if \rightarrow terminating

label steps by their source, order labels by \rightarrow^{+}

Lemma of Newman/Pous by decreasingness

Proof.
local confluence \Rightarrow confluence, if \rightarrow terminating

label steps by their source, order labels by \rightarrow^{+}

Lemma of Newman/Pous by decreasingness

Proof.
local confluence \Rightarrow confluence, if \rightarrow terminating

label steps by their source, order labels by \rightarrow^{+}

Lemma of Newman/Pous by decreasingness

Proof.
local confluence \Rightarrow confluence, if \rightarrow terminating

label steps by their source, order labels by \rightarrow^{+}

Lemma of Newman/Pous by decreasingness

Proof.
local commutation \Rightarrow commutation, if $\rightarrow=\triangleright \cup \vee$ terminating

label steps by their source, order labels by \rightarrow^{+}

Lemma of Newman/Pous by decreasingness

Proof.
local commutation \Rightarrow commutation, if $\rightarrow=\triangleright \cup \vee$ terminating

label steps by their source, order labels by \rightarrow^{+}

Lemma of Newman/Pous by decreasingness

Proof.
local commutation \Rightarrow commutation, if $\triangleright^{+} ; \nabla^{+}$terminating

label by colored source, $x \succ y$ if $x(\triangleright \cup \triangleright)^{+} y$ with \triangleright-step

Lemma of Newman/Pous by decreasingness

Proof.
local commutation \Rightarrow commutation, if $\triangleright^{+} ; \nabla^{+}$terminating

label by colored source, $x \succ y$ if $x(\triangleright \cup \triangleright)^{+} y$ with \triangleright-step

Lemma of Newman/Pous by decreasingness

Proof.
local commutation \Rightarrow commutation, if $\triangleright^{+} ; \nabla^{+}$terminating

label by colored source, $x \succ y$ if $x(\triangleright \cup \triangleright)^{+} y$ with \triangleright-step

Lemma of Hindley/uet by decreasingness

Lemma of Hindley/uet by decreasingness

Proof.
strong confluence \Rightarrow confluence

label steps by their direction (/ or r), order r above /

Lemma of Hindley/uet by decreasingness

Proof.
strong confluence \Rightarrow confluence

label steps by their direction (/ or r), order r above /

Lemma of Hindley/uet by decreasingness

Proof.
strong commutation \Rightarrow commutation

label steps by their direction (\triangleright by I, \square by r), order r above $/$

More than Newman/Pous \cup Hindley/uet. . .

More than Newman/Pous \cup Hindley/uet. . .

intuition $\frac{\text { monotone algebra }}{\text { termination of TRSs }}=\frac{\text { decreasing diagrams }}{\text { confluence of ARSs }}$

More than Newman/Pous \cup Hindley/uet. . .

intuition $\frac{\text { monotone algebra }}{\text { termination of TRSs }}=\frac{\text { decreasing diagrams }}{\text { confluence of ARSs }}$

- complete for proving confluence of countable ARSs (vO94)

More than Newman/Pous \cup Hindley/uet. . .

intuition $\frac{\text { monotone algebra }}{\text { termination of TRSs }}=\frac{\text { decreasing diagrams }}{\text { confluence of ARSs }}$

- complete for proving confluence of countable ARSs (vO94)
- open whether complete for non-countable/commutation

More than Newman/Pous \cup Hindley/uet. . .

intuition $\frac{\text { monotone algebra }}{\text { termination of TRSs }}=\frac{\text { decreasing diagrams }}{\text { confluence of ARSs }}$

- complete for proving confluence of countable ARSs (vO94)
- open whether complete for non-countable/commutation
- applying decreasing diagams not perceived as simple...

More than Newman/Pous \cup Hindley/uet. . .

intuition $\frac{\text { monotone algebra }}{\text { termination of TRSs }}=\frac{\text { decreasing diagrams }}{\text { confluence of ARSs }}$

- complete for proving confluence of countable ARSs (vO94)
- open whether complete for non-countable/commutation
- applying decreasing diagams not perceived as simple...

Today:

More than Newman/Pous \cup Hindley/uet. . .

intuition $\frac{\text { monotone algebra }}{\text { termination of TRSs }}=\frac{\text { decreasing diagrams }}{\text { confluence of ARSs }}$

- complete for proving confluence of countable ARSs (vO94)
- open whether complete for non-countable/commutation
- applying decreasing diagams not perceived as simple...

Today:

1. stronger properties (than confluence/commutation)

More than Newman/Pous \cup Hindley/uet. . .

intuition $\frac{\text { monotone algebra }}{\text { termination of TRSs }}=\frac{\text { decreasing diagrams }}{\text { confluence of ARSs }}$

- complete for proving confluence of countable ARSs (vO94)
- open whether complete for non-countable/commutation
- applying decreasing diagams not perceived as simple...

Today:

1. stronger properties (than confluence/commutation)
2. troughs \rightsquigarrow seascapes (more general local diagrams)

More than Newman/Pous \cup Hindley/uet. . .

intuition $\frac{\text { monotone algebra }}{\text { termination of TRSs }}=\frac{\text { decreasing diagrams }}{\text { confluence of ARSs }}$

- complete for proving confluence of countable ARSs (vO94)
- open whether complete for non-countable/commutation
- applying decreasing diagams not perceived as simple...

Today:

1. stronger properties (than confluence/commutation)
2. troughs \rightsquigarrow seascapes (more general local diagrams)
3. heuristics (for constructing labels)

(1) Stronger properties

Theorem
If P holds locally and preserved by pasting, then holds for all D.

holds locally

(1) Stronger properties

Theorem
If P holds locally and preserved by pasting, then holds for all D.

preserved by pasting on left

(1) Stronger properties

Theorem
If P holds locally and preserved by pasting, then holds for all D.

preserved by pasting on left

(1) Stronger properties

Theorem
If P holds locally and preserved by pasting, then holds for all D.

preserved by pasting on right

(1) Stronger properties

Theorem
If P holds locally and preserved by pasting, then holds for all D.

preserved by pasting on right

(1) Stronger properties

Proof.
trivial from decreasing diagrams proof. load induction with P.
\square

(1) Stronger properties

Example

If local diagrams are decreasing with non-empty $>(+)$, then \triangleright commutes with non-empty $\quad(+)$.

(1) Stronger properties

Example

If local diagrams are decreasing with non-empty $>(+)$, then \triangleright commutes with non-empty $>(+)$.
checking (+) locally suffices:

(1) Stronger properties

Example

If local diagrams are decreasing with non-empty $>(+)$, then \triangleright commutes with non-empty $>(+)$.
$(+)$ preserved by pasting on left:

(1) Stronger properties

Example

If local diagrams are decreasing with non-empty $>(+)$, then \triangleright commutes with non-empty $(+)$.
$(+)$ preserved by pasting on left:

(1) Stronger properties

Example

If local diagrams are decreasing with non-empty $>(+)$, then \triangleright commutes with non-empty $>(+)$.
$(+)$ preserved by pasting on right:

(1) Stronger properties

Example

If local diagrams are decreasing with non-empty $>(+)$, then \triangleright commutes with non-empty $>(+)$.
$(+)$ preserved by pasting on right:

(2) Trough \rightsquigarrow seascape

(2) Trough \rightsquigarrow seascape

from Newman's Lemma (trough) to (seascape)
Theorem (Winkler \& Buchberger 1983) local confluence below \Rightarrow confluence, if \rightarrow terminating

Definition

below: all objects in seascape \rightarrow^{+}-reachable from top

(2) Trough \rightsquigarrow seascape

from folklore lemma (trough) to (seascape)
Theorem
local commutation below \Rightarrow commutation, if $\triangleright \cup \vee$ terminating

Definition
below: all objects in seascape $(\triangleright \cup \triangleright)^{+}$-reachable from top

(2) Trough \rightsquigarrow seascape

from Pous' Lemma (trough) to (seascape)
Theorem local commutation below \Rightarrow commutation, if $\triangleright^{+} ; \nabla^{+}$terminating

Definition
below: if $a \triangleright b$ in seascape, $a(\triangleright \cup \triangleright)^{+}$-reachable from top with \triangleright

(2) Trough \rightsquigarrow seascape

from Pous' Lemma (trough) to (seascape)
Theorem local commutation below \Rightarrow commutation, if $\triangleright^{+} ; \nabla^{+}$terminating

Definition
below: if $a \triangleright b$ in seascape, $a(\triangleright \cup \triangleright)^{+}$-reachable from top with \triangleright

(2) Trough \rightsquigarrow seascape

from decreasing diagrams (trough) to (seascape)
Theorem locally decreasing seascape \Rightarrow confluence

$\rightarrow=\bigcup_{i \in I} \rightarrow_{i}, \prec$ well-founded order on I

(2) Trough \rightsquigarrow seascape

from decreasing diagrams (trough) to (seascape)
Theorem locally decreasing seascape \Rightarrow commutation

$\triangleright=\bigcup_{i \in I} \triangleright_{i}, \downarrow=\bigcup_{j \in J} \triangleright_{j}, \prec$ well-founded order on $I \cup J$

(2) Trough \rightsquigarrow seascape

Proof.

same measure of peaks, but local peak may not be base case

(2) Trough \rightsquigarrow seascape

Proof.

but its peaks can be filled in by induction

(2) Trough \rightsquigarrow seascape

Proof.

but its peaks can be filled in by induction.

(2) Trough \rightsquigarrow seascape

Proof.
but its peaks can be filled in by induction..

(2) Trough \rightsquigarrow seascape

Proof.

giving in the end a (trough) locally decreasing diagram

(2) Trough \rightsquigarrow seascape

- trough result \Leftrightarrow seascape result, for given labelling

(2) Trough \rightsquigarrow seascape

- trough result \Leftrightarrow seascape result, for given labelling
- Newman \Leftrightarrow Winkler \& Buchberger (idem for variants)

(2) Trough \rightsquigarrow seascape

- trough result \Leftrightarrow seascape result, for given labelling
- Newman \Leftrightarrow Winkler \& Buchberger (idem for variants)
- Huet \Leftrightarrow Huet (nothing gained, idem for Hindley)

(2) Trough \rightsquigarrow seascape

- trough result \Leftrightarrow seascape result, for given labelling
- Newman \Leftrightarrow Winkler \& Buchberger (idem for variants)
- Huet \Leftrightarrow Huet (nothing gained, idem for Hindley)
- covers all 'local . . . \Rightarrow confluence' results in Terese Chapter 1

(2) Trough \rightsquigarrow seascape

- trough result \Leftrightarrow seascape result, for given labelling
- Newman \Leftrightarrow Winkler \& Buchberger (idem for variants)
- Huet \Leftrightarrow Huet (nothing gained, idem for Hindley)
- covers all 'local . . . \Rightarrow confluence' results in Terese Chapter 1
- handy heuristic: self-labelling (label steps by themselves) allows to transfer wfo on objects to wfo on steps

(2) Trough \rightsquigarrow seascape

trough version:
Theorem (Geser) commutation holds, if terminating and

(2) Trough \rightsquigarrow seascape

equivalent to (Bachmair \& Dershowitz):
Theorem (Geser) commutation holds, if $\downarrow / \triangleleft(=\varangle<>$; $\varangle)$ terminating and

(2) Trough \rightsquigarrow seascape

seascape version:
Theorem (Geser)
commutation holds, if $\downarrow / \triangleleft(=\varangle$; $; \triangleleft)$ terminating and

(2) Trough \rightsquigarrow seascape

Theorem (Geser) commutation holds, if $>/ \triangleleft$ terminating and

Proof.

label steps by target (heuristic), order by $>/ \triangleleft$.
(2) Trough \rightsquigarrow seascape

Theorem (Geser) commutation holds, if $\downarrow / \triangleleft$ terminating and

Proof.

label steps by target, order by $>/ \triangleleft$.

(2) Trough \rightsquigarrow seascape

Theorem (Geser) commutation holds, if $\downarrow / \triangleleft$ terminating and

Proof.

all labels in seascape $>/ \triangleleft$-reachable from (label of) \triangleright-step.

(1) Stronger properties

from (trough) to (seascape)
Theorem
If P holds locally and preserved by pasting, then holds for all D with now pasting also inside seascapes!

(1) Stronger properties

from (trough) to (seascape)
Theorem
If P holds locally and preserved by pasting, then holds for all D with now pasting also inside seascapes!

Example

- define distance of a diagram with peak $b \longleftarrow a \rightarrow c$ and seascape $b \leftrightarrow^{*} c$, as number of forward steps minus number of backward steps on $a \rightarrow b \leftrightarrow^{*} c \nleftarrow a$.

(1) Stronger properties

from (trough) to (seascape)
Theorem
If P holds locally and preserved by pasting, then holds for all D with now pasting also inside seascapes!

Example

- define distance of a diagram with peak $b \leftrightarrow a \rightarrow c$ and seascape $b \leftrightarrow^{*} c$, as number of forward steps minus number of backward steps on $a \rightarrow b \leftrightarrow^{*} c \nleftarrow a$.
- diagrams with non-negative distance preserved under pasting.

(1) Stronger properties

from (trough) to (seascape)
Theorem
If P holds locally and preserved by pasting, then holds for all D with now pasting also inside seascapes!

Example

- define distance of a diagram with peak $b \longleftarrow a \rightarrow c$ and seascape $b \leftrightarrow^{*} c$, as number of forward steps minus number of backward steps on $a \rightarrow b \leftrightarrow^{*} c \nleftarrow a$.
- diagrams with non-negative distance preserved under pasting.
- will yield: all maximal reductions have same length

(3) Heuristics

- label step by rule-name in a term rewriting system

(3) Heuristics

- label step by rule-name in a term rewriting system

Theorem
Linear TRS is confluent, if critical peaks are locally decreasing.

(3) Heuristics

- label step by rule-name in a term rewriting system

Theorem
Linear TRS is confluent, if critical peaks are locally decreasing.
Example (Gramlich \& Lucas)

1. nats $\rightarrow 0$: inc(nats)
2. $\operatorname{inc}(x: y) \rightarrow \mathrm{s}(x): \operatorname{inc}(y)$
3. $\mathrm{hd}(x: y) \rightarrow x$
4. $\mathrm{tl}(x: y) \rightarrow y$
5. inc(tl(nats)) $\rightarrow \mathrm{tl}($ inc(nats $))$
one critical peak

(3) Heuristics

- label step by rule-name in a term rewriting system

Theorem

Linear TRS is confluent, if critical peaks are locally decreasing.
Example (Gramlich \& Lucas)

easy to order rule-symbols for decreasingness (like for RPO)

Concluding remarks

- covers all Terese exc. of shape 'local \Rightarrow global confluence'

Concluding remarks

- covers all Terese exc. of shape 'local \Rightarrow global confluence'
- used in process algebra to establish bisimulation results (Pous)

Concluding remarks

- covers all Terese exc. of shape 'local \Rightarrow global confluence'
- used in process algebra to establish bisimulation results (Pous)
- can deal with λ-calculi with explicit subs (proceedings)

Concluding remarks

- covers all Terese exc. of shape 'local \Rightarrow global confluence'
- used in process algebra to establish bisimulation results (Pous)
- can deal with λ-calculi with explicit subs (proceedings)
- employed for modularity of constructive confluence (IJCAR)

Concluding remarks

- covers all Terese exc. of shape 'local \Rightarrow global confluence'
- used in process algebra to establish bisimulation results (Pous)
- can deal with λ-calculi with explicit subs (proceedings)
- employed for modularity of constructive confluence (IJCAR)
- heuristics should be automatable (like monotone algebras)

Concluding remarks

- covers all Terese exc. of shape 'local \Rightarrow global confluence'
- used in process algebra to establish bisimulation results (Pous)
- can deal with λ-calculi with explicit subs (proceedings)
- employed for modularity of constructive confluence (IJCAR)
- heuristics should be automatable (like monotone algebras)
- extends to decreasing diagrams modulo (Ohlebusch)

Concluding remarks

- covers all Terese exc. of shape 'local \Rightarrow global confluence'
- used in process algebra to establish bisimulation results (Pous)
- can deal with λ-calculi with explicit subs (proceedings)
- employed for modularity of constructive confluence (IJCAR)
- heuristics should be automatable (like monotone algebras)
- extends to decreasing diagrams modulo (Ohlebusch)
- do other proofs of confluence by decreasing diagrams generalise (naturally)?

