Confluence by Decreasing Diagrams, Converted

Vincent van Oostrom

Theoretical Philosophy
Utrecht University
Royal Kingdom of the Netherlands
research conducted at LIX, Paris, the Republic of France

16:00 - 16:30, Thursday July 17, RTA 2008

Confluence by

local confluence (Newman)
decreasing diagrams (trough)
local confluence below (Winkler & Buchberger)
decreasing diagrams (seascape)

Concluding remarks

Theorem (Newman 1942)

local confluence implies confluence, if \rightarrow terminating

Theorem (folklore?)

Theorem (Pous 2007)

local commutation implies commutation, if \triangleright^+ ; \blacktriangleright^+ terminating

Proof. intuition: tiling terminates since splitting bounded by termination.

Proof.

intuition: tiling terminates since splitting bounded by termination.

Proof.

intuition: tiling terminates since splitting bounded by termination.

Proof.

intuition: tiling terminates since splitting bounded by termination.

Proof.

intuition: tiling terminates since splitting bounded by termination.

Proof.

intuition: tiling terminates since splitting bounded by termination.

Proof.

intuition: tiling terminates since splitting bounded by termination.

Proof.

intuition: tiling terminates since splitting bounded by termination.

Proof.

intuition: tiling terminates since splitting bounded by termination.

Proof.

intuition: tiling terminates since splitting bounded by termination.

Proof.

intuition: tiling terminates since splitting bounded by termination.

Proof.

intuition: tiling terminates since splitting bounded by termination.

Proof.

intuition: tiling terminates since splitting bounded by termination.

Proof.

intuition: tiling terminates since splitting bounded by termination.

Proof.

intuition: tiling terminates since splitting bounded by termination.

must stop: infinite tiling \Rightarrow infinite \triangleright^+ ; \triangleright^+ reduction.

Theorem (Huet 1980) strong confluence implies confluence

Theorem (Hindley 1964) strong commutation implies commutation

Proof. intuition: tiling terminates since only ▷ steps are split

Proof. intuition: tiling terminates since only ▷ steps are split

Proof.

intuition: tiling terminates since only ▷ steps are split

Proof.

intuition: tiling terminates since only ▷ steps are split

Proof.

intuition: tiling terminates since only ▷ steps are split

Proof.

intuition: tiling terminates since only ▷ steps are split

Proof.

intuition: tiling terminates since only ▷ steps are split

Proof.

intuition: tiling terminates since only ▷ steps are split

Proof.

intuition: tiling terminates since only ▷ steps are split

Proof.

intuition: tiling terminates since only ▷ steps are split

Proof.

intuition: tiling terminates since only ▷ steps are split

Proof.

intuition: tiling terminates since only ▷ steps are split

Proof.

intuition: tiling terminates since only ▷ steps are split

must stop: each ▶ stripe is eventualy filled

Unify Newman/Pous with Hindley/uet?

Theorem (de Bruijn 1978, vO 1994)

locally decreasing implies confluence

 $\rightarrow = \bigcup_{i \in I} \rightarrow_i, \prec well$ -founded order on I

Theorem (de Bruijn 1978, vO 1994)

locally decreasing implies confluence

 $\rightarrow = \bigcup_{i \in I} \rightarrow_i$, \prec well-founded order on I

Theorem (vO 1994)

locally decreasing implies commutation

$$\triangleright = \bigcup_{i \in I} \triangleright_i$$
, $\blacktriangleright = \bigcup_{j \in J} \blacktriangleright_j$, \prec well-founded order on $I \cup J$

Theorem (vO 1994)

locally decreasing implies commutation

$$\triangleright = \bigcup_{i \in I} \triangleright_i$$
, $\blacktriangleright = \bigcup_{j \in J} \blacktriangleright_j$, \prec well-founded order on $I \cup J$

Proof. by decreasingness

peak σ , τ as large as lhs $\sigma\tau'$ and rhs $\tau\sigma'$ after filtering

Proof. by decreasingness

measure peak by multiset sum $|\sigma| \uplus |\tau|$ |_| filters smaller labels to right, |32343| = [3, 3, 4]

Proof. by decreasingness

decreasing if $|\sigma| \uplus |\tau|$ as large as both $|\sigma \tau'|$ and $|\tau \sigma'|$ in multiset-extension of \prec

Proof.

(1) locally decreasing \Rightarrow decreasing

peak
$$|i| \uplus |j|$$

lhs $|i(\prec i)^*(j + \varepsilon)(\prec i + \prec j)^*|$

Proof.

(1) locally decreasing \Rightarrow decreasing

$$|i| \uplus |j|$$
 is $[i] \uplus [j] = [i,j]$
 $|i(\prec i)^*(j+\varepsilon)(\prec i+\prec j)^*|$ is $[i]$, $[i,j]$ or $[i,j_1,\ldots,j_n]$

Proof.

(2) decreasingness preserved under pasting

Proof.

(2) decreasingness preserved under pasting on left

Proof.

(2) decreasingness preserved under pasting

Proof.

(2) decreasingness preserved under pasting on right

Proof.

(3) filling with decreasing diagram decreases measure

Proof.

(3) filling with decreasing diagram decreases measure

Proof.

(3) filling with decreasing diagram decreases measure

$$|\sigma| \uplus |\tau v|$$
 greater than $|\sigma'| \uplus |v|$

Proof.

Proof.

Unifies Newman/Pous with Hindley/uet!

Proof.

local confluence \Rightarrow confluence, if \rightarrow terminating

Proof. local confluence \Rightarrow confluence, if \rightarrow terminating

Proof.

local confluence \Rightarrow confluence, if \rightarrow terminating

Proof.

local confluence \Rightarrow confluence, if \rightarrow terminating

Proof.

local confluence \Rightarrow confluence, if \rightarrow terminating

Proof.

local confluence \Rightarrow confluence, if \rightarrow terminating

Proof.

local commutation \Rightarrow commutation, if \rightarrow = \triangleright \cup \blacktriangleright terminating

Proof.

local commutation \Rightarrow commutation, if \rightarrow = \triangleright \cup \blacktriangleright terminating

Proof.

local commutation \Rightarrow commutation, if \triangleright^+ ; \blacktriangleright^+ terminating

label by colored source, $x \succ y$ if $x (\triangleright \cup \triangleright)^+ y$ with \triangleright -step

Lemma of Newman/Pous by decreasingness

Proof.

local commutation \Rightarrow commutation, if \triangleright^+ ; \blacktriangleright^+ terminating

label by colored source, $x \succ y$ if $x (\triangleright \cup \triangleright)^+ y$ with \triangleright -step

Lemma of Newman/Pous by decreasingness

Proof.

local commutation \Rightarrow commutation, if \triangleright^+ ; \blacktriangleright^+ terminating

label by colored source, $x \succ y$ if $x (\triangleright \cup \triangleright)^+ y$ with \triangleright -step

Proof. strong confluence \Rightarrow confluence

label steps by their direction (I or r), order r above I

 $\begin{array}{l} \textbf{Proof.} \\ \textbf{strong confluence} \Rightarrow \textbf{confluence} \end{array}$

label steps by their direction (I or r), order r above I

 $\begin{array}{l} {\sf Proof.} \\ {\sf strong} \ {\sf commutation} \ \Rightarrow \ {\sf commutation} \end{array}$

label steps by their direction (\triangleright by I, \blacktriangleright by r), order r above I

 $\frac{\text{monotone algebra}}{\text{intuition}} = \frac{\frac{\text{decreasing diagrams}}{\text{confluence of ARSs}}$

```
\frac{\text{monotone algebra}}{\text{intuition}} = \frac{\text{decreasing diagrams}}{\text{confluence of ARSs}}
```

► complete for proving confluence of countable ARSs (vO94)

```
\frac{\text{monotone algebra}}{\text{intuition}} = \frac{\text{decreasing diagrams}}{\text{confluence of ARSs}}
```

- complete for proving confluence of countable ARSs (vO94)
- open whether complete for non-countable/commutation

```
\frac{\text{monotone algebra}}{\text{intuition}} = \frac{\text{decreasing diagrams}}{\text{confluence of ARSs}}
```

- complete for proving confluence of countable ARSs (vO94)
- open whether complete for non-countable/commutation
- applying decreasing diagams not perceived as simple. . .

```
\frac{\text{monotone algebra}}{\text{termination of TRSs}} = \frac{\text{decreasing diagrams}}{\text{confluence of ARSs}}
```

- complete for proving confluence of countable ARSs (vO94)
- open whether complete for non-countable/commutation
- applying decreasing diagams not perceived as simple. . .

Today:

```
\frac{\text{monotone algebra}}{\text{intuition}} = \frac{\text{decreasing diagrams}}{\text{confluence of ARSs}}
```

- complete for proving confluence of countable ARSs (vO94)
- open whether complete for non-countable/commutation
- applying decreasing diagams not perceived as simple. . .

Today:

1. stronger properties (than confluence/commutation)

```
\frac{\text{monotone algebra}}{\text{intuition}} = \frac{\text{decreasing diagrams}}{\text{confluence of ARSs}}
```

- ► complete for proving confluence of countable ARSs (vO94)
- open whether complete for non-countable/commutation
- applying decreasing diagams not perceived as simple. . .

Today:

- 1. stronger properties (than confluence/commutation)
- troughs → seascapes (more general local diagrams)

```
\frac{\text{monotone algebra}}{\text{intuition}} = \frac{\text{decreasing diagrams}}{\text{confluence of ARSs}}
```

- complete for proving confluence of countable ARSs (vO94)
- open whether complete for non-countable/commutation
- applying decreasing diagams not perceived as simple. . .

Today:

- 1. stronger properties (than confluence/commutation)
- troughs → seascapes (more general local diagrams)
- 3. heuristics (for constructing labels)

Theorem

If P holds locally and preserved by pasting, then holds for all D.

holds locally

Theorem

If P holds locally and preserved by pasting, then holds for all D.

preserved by pasting on left

Theorem

If P holds locally and preserved by pasting, then holds for all D.

preserved by pasting on left

Theorem

If P holds locally and preserved by pasting, then holds for all D.

preserved by pasting on right

Theorem

If P holds locally and preserved by pasting, then holds for all D.

preserved by pasting on right

Proof.

trivial from decreasing diagrams proof. load induction with P.

Example

If local diagrams are decreasing with non-empty \triangleright (+), then \triangleright commutes with non-empty \triangleright (+).

Example

If local diagrams are decreasing with non-empty \triangleright (+), then \triangleright commutes with non-empty \triangleright (+). checking (+) locally suffices:

Example

If local diagrams are decreasing with non-empty \triangleright (+), then \triangleright commutes with non-empty \triangleright (+).

(+) preserved by pasting on left:

Example

If local diagrams are decreasing with non-empty \triangleright (+), then \triangleright commutes with non-empty \triangleright (+).

(+) preserved by pasting on left:

Example

If local diagrams are decreasing with non-empty \triangleright (+), then \triangleright commutes with non-empty \triangleright (+).

(+) preserved by pasting on right:

Example

If local diagrams are decreasing with non-empty \triangleright (+), then \triangleright commutes with non-empty \triangleright (+).

(+) preserved by pasting on right:

from Newman's Lemma (trough) to (seascape)

Theorem (Winkler & Buchberger 1983)

 $local\ confluence\ below \Rightarrow\ confluence,\ if \to\ terminating$

Definition

below: all objects in seascape →⁺-reachable from top

from folklore lemma (trough) to (seascape)

Theorem

local commutation $below \Rightarrow commutation$, if $\triangleright \cup \triangleright$ terminating

Definition

below: all objects in seascape $(\triangleright \cup \triangleright)^+$ -reachable from top

from Pous' Lemma (trough) to (seascape)

Theorem

local commutation $below \Rightarrow commutation$, if \triangleright^+ ; \triangleright^+ terminating

Definition

below: if $a \triangleright b$ in seascape, $a (\triangleright \cup \triangleright)^+$ -reachable from top with \triangleright

from Pous' Lemma (trough) to (seascape)

Theorem

local commutation $below \Rightarrow commutation$, if \triangleright^+ ; \triangleright^+ terminating

Definition

below: if $a \triangleright b$ in seascape, $a (\triangleright \cup \triangleright)^+$ -reachable from top with \triangleright

from decreasing diagrams (trough) to (seascape)

Theorem

locally decreasing seascape \Rightarrow confluence

$$\rightarrow = \bigcup_{i \in I} \rightarrow_i$$
, \prec well-founded order on I

from decreasing diagrams (trough) to (seascape)

Theorem

locally decreasing seascape \Rightarrow commutation

$$\triangleright = \bigcup_{i \in I} \triangleright_i$$
, $\blacktriangleright = \bigcup_{j \in J} \blacktriangleright_j$, \prec well-founded order on $I \cup J$

Proof. same measure of peaks, but local peak may not be base case

Proof. but its peaks can be filled in by induction

Proof. but its peaks can be filled in by induction.

Proof. but its peaks can be filled in by induction..

Proof. giving in the end a (trough) locally decreasing diagram

 \blacktriangleright trough result \Leftrightarrow seascape result, for given labelling

- ▶ trough result ⇔ seascape result, for given labelling
- ▶ Newman ⇔ Winkler & Buchberger (idem for variants)

- ▶ trough result ⇔ seascape result, for given labelling
- ▶ Newman ⇔ Winkler & Buchberger (idem for variants)
- ► Huet ⇔ Huet (nothing gained, idem for Hindley)

- ▶ trough result ⇔ seascape result, for given labelling
- ▶ Newman ⇔ Winkler & Buchberger (idem for variants)
- ► Huet ⇔ Huet (nothing gained, idem for Hindley)
- covers all 'local . . . ⇒ confluence' results in Terese Chapter 1

- ▶ trough result ⇔ seascape result, for given labelling
- Newman ⇔ Winkler & Buchberger (idem for variants)
- ► Huet ⇔ Huet (nothing gained, idem for Hindley)
- covers all 'local . . . ⇒ confluence' results in Terese Chapter 1
- ► handy heuristic: self-labelling (label steps by themselves) allows to transfer wfo on objects to wfo on steps

trough version:

Theorem (Geser) commutation holds, if ▶ terminating and

equivalent to (Bachmair & Dershowitz):

Theorem (Geser)

commutation holds, if $\blacktriangleright/\sphericalangle (= \lessdot, \blacktriangleright; \lessdot)$ terminating and

seascape version:

Theorem (Geser) commutation holds, if $\blacktriangleright/\sphericalangle(=\ll; \blacktriangleright; \ll)$ terminating and

Theorem (Geser) commutation holds, if $\triangleright / \triangleleft$ terminating and

Proof.

label steps by target (heuristic), order by ▶/⊲.

Theorem (Geser) commutation holds, if $\triangleright / \triangleleft$ terminating and

Proof.

label steps by target, order by ►/⊲.

Theorem (Geser) commutation holds, if ▶/⊲ terminating and

Proof.

all labels in seascape ▶/<-reachable from (label of) ⊳-step.

from (trough) to (seascape)

Theorem

If P holds locally and preserved by pasting, then holds for all D with now pasting also inside seascapes!

from (trough) to (seascape)

Theorem

If P holds locally and preserved by pasting, then holds for all D with now pasting also inside seascapes!

Example

▶ define distance of a diagram with peak $b \leftarrow a \rightarrow c$ and seascape $b \leftrightarrow^* c$, as number of forward steps minus number of backward steps on $a \rightarrow b \leftrightarrow^* c \leftarrow a$.

from (trough) to (seascape)

Theorem

If P holds locally and preserved by pasting, then holds for all D with now pasting also inside seascapes!

Example

- ▶ define distance of a diagram with peak $b \leftarrow a \rightarrow c$ and seascape $b \leftrightarrow^* c$, as number of forward steps minus number of backward steps on $a \rightarrow b \leftrightarrow^* c \leftarrow a$.
- diagrams with non-negative distance preserved under pasting.

from (trough) to (seascape)

Theorem

If P holds locally and preserved by pasting, then holds for all D with now pasting also inside seascapes!

Example

- ▶ define distance of a diagram with peak $b \leftarrow a \rightarrow c$ and seascape $b \leftrightarrow^* c$, as number of forward steps minus number of backward steps on $a \rightarrow b \leftrightarrow^* c \leftarrow a$.
- diagrams with non-negative distance preserved under pasting.
- will yield: all maximal reductions have same length

▶ label step by rule-name in a term rewriting system

▶ label step by rule-name in a term rewriting system

Theorem

Linear TRS is confluent, if critical peaks are locally decreasing.

▶ label step by rule-name in a term rewriting system

Theorem

Linear TRS is confluent, if critical peaks are locally decreasing.

Example (Gramlich & Lucas)

- 1. $nats \rightarrow 0 : inc(nats)$
- 2. $\operatorname{inc}(x:y) \to \operatorname{s}(x) : \operatorname{inc}(y)$
- 3. $hd(x:y) \rightarrow x$
- 4. $tl(x:y) \rightarrow y$
- 5. $inc(tl(nats)) \rightarrow tl(inc(nats))$

one critical peak

label step by rule-name in a term rewriting system

Theorem

Linear TRS is confluent, if critical peaks are locally decreasing.

Example (Gramlich & Lucas)

easy to order rule-symbols for decreasingness (like for RPO)

▶ covers all Terese exc. of shape 'local ⇒ global confluence'

- ► covers all Terese exc. of shape 'local ⇒ global confluence'
- used in process algebra to establish bisimulation results (Pous)

- ► covers all Terese exc. of shape 'local ⇒ global confluence'
- used in process algebra to establish bisimulation results (Pous)
- \triangleright can deal with λ -calculi with explicit subs (proceedings)

- ► covers all Terese exc. of shape 'local ⇒ global confluence'
- ▶ used in process algebra to establish bisimulation results (Pous)
- \triangleright can deal with λ -calculi with explicit subs (proceedings)
- employed for modularity of constructive confluence (IJCAR)

- ► covers all Terese exc. of shape 'local ⇒ global confluence'
- used in process algebra to establish bisimulation results (Pous)
- \triangleright can deal with λ -calculi with explicit subs (proceedings)
- employed for modularity of constructive confluence (IJCAR)
- heuristics should be automatable (like monotone algebras)

- ► covers all Terese exc. of shape 'local ⇒ global confluence'
- used in process algebra to establish bisimulation results (Pous)
- \triangleright can deal with λ -calculi with explicit subs (proceedings)
- employed for modularity of constructive confluence (IJCAR)
- heuristics should be automatable (like monotone algebras)
- extends to decreasing diagrams modulo (Ohlebusch)

- ► covers all Terese exc. of shape 'local ⇒ global confluence'
- used in process algebra to establish bisimulation results (Pous)
- \triangleright can deal with λ -calculi with explicit subs (proceedings)
- employed for modularity of constructive confluence (IJCAR)
- heuristics should be automatable (like monotone algebras)
- extends to decreasing diagrams modulo (Ohlebusch)
- do other proofs of confluence by decreasing diagrams generalise (naturally)?